

Subscriber access provided by ISTANBUL TEKNIK UNIV

Isoreiswigin, a New Diterpene from a Marine Sponge

Y. Kashman, and S. Hirsch

J. Nat. Prod., 1991, 54 (5), 1430-1432• DOI: 10.1021/np50077a037 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50077a037 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

ISOREISWIGIN, A NEW DITERPENE FROM A MARINE SPONGE

Y. KASHMAN* and S. HIRSCH

Raymond & Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Israel

ABSTRACT.—The structure of isoreiswigin [3], a new perhydroazulene diterpene, has been determined by combined 1D and 2D nmr and mass spectral techniques.

Earlier we reported the isolation of two novel antiviral diterpenes, reiswigins A [1] and B [2], from the sponge *Epipolasis reiswigi* Topsent (Demospongiae) (1). Herewith we wish to report a third, closely related, diterpene **3** which was isolated in minute amounts together with compounds 1 and 2. Compound 3, designated isoreiswigin, was obtained pure following repeated vacuum flash chromatographies on Si gel H, followed by normal and reversed-phase hplc (20 mg, 0.03% dry wt of the sponge).

Isoreiswigin was assigned molecular formula C₂₀H₃₀O₃ by hreims (found 318.2167; +2.7 mmu). The ¹³C-nmr spectrum showed three singlet carbonyl resonances at 202.3, 204.9, 210.1 ppm. These, considered along with ir absorptions at 1738, 1730, 1710 (sh), and 1642 cm⁻¹, established the presence of three ketone functionalities, probably a pentanone, an enone, and a simple ketone. A DEPT experiment showed the remaining carbon resonances to consist of two quaternary (one sp^2 and one sp^3), five methine (one sp^2 and four sp^3), five methylene, and five methyl resonances. With six sites of unsaturation required by the molecular formula and four accounted for by the ¹³C-nmr data, 3 was determined to be a bicyclic

diterpene. The ¹H-nmr data clearly established the same functionalities as in reiswigin A [1] plus one additional carbonyl (which replaces one of the methylenes of 1). Furthermore, the 1738 cm^{-1} absorption of the latter carbonyl group suggested it to be in a cyclopentanone ring. The trivial 9-oxo-reiswigin structure was, however, excluded by a COSY experiment (2). The latter spectrum pointed clearly to a seven-spin system = $CCH_2CH_2CH_2CO-$ (Table 1) which does not exist in 1 and 2. In addition, three other spin systems (C-17-C-20; C-10, C-13-C-15; and C-3-C-12) were further deduced from the ¹H-¹H correlation spectrum. The latter protonated sites were further confirmed by a TOCSY experiment (3) (Table 1). A one-bond ¹H-¹³C correlation experiment, HMQC (4), established all onebond proton-carbon connectivities determining inter alia the five methylene pairs (C-5, -6, -8, -15 and -17). As all protons (and carbons) were separated in the 500 MHz spectrum, the complete carbon skeleton of 3 could have been established unequivocally from a multiple bond $({}^{2}J_{CH}$ to ${}^{4}J_{CH})$ proton-carbon connectivity experiment (HMBC) (5). All correlations observed in this experiment are presented in Table 2. As seen from

3

Sep-Oct 1991] Kashman and Hirsch: Diterpene from Sponge

Proton	$\delta_{\rm H}({\rm m},J{\rm in}{\rm Hz})$	coupled to H (¹ H- ¹ H COSY)	coupled to H (TOCSY) ^a
H-3	6.07 (s)	Me-12	58 60 68
Η-5β	1.57 (dt, 12.5, 4.3)	6α, 6β	6α, 6β
H-6α	1.30 (m) 1.77 (m)	op , 7 7	op, /
Η-7	2.05 (m) 2.80 (dd, 18.5, 4.9)	8α, 8β 8β	5β, 6α, 6β, 7, 8β
H-8β	2.55 (dd, 18.5, 11.9) 1.70 (m)	13	5β, 6α, 6β, 7, 8α 13, Me-14
Me-11	0.99 (s) 1.97 (s) ^b		
H-13	2.10(m) 0.85(d, 6.5)	Me-14, 15	Me-14 15
H-15	2.28(dd, 19.5, 7.5) 2.12(dd, 19.5, 8.5)	15'	
H-17	2.17 (d, 6.5) 2.04 (m)	18 Me-19, Me-20	18, Me-19, Me-20) Me-19, Me-20
Me-19	0.83 (d, 6.6) 0.82 (d, 6.6)		

TABLE 1. ¹H-nmr Data (500 MHz, CDCl₃) of Isoreiswigin [3].

^aMixing time of 0.09 sec.

^bH-5 α overlaps partially with Me-12.

Carbon	δ _c	¹ H- ¹³ C Connectivities ^b	
C-1	56.7 (s)	H-8, H-10	
С-2	204.9(s)	H-3, H-11	
С-3	132.4 (d)	H-5, H-12	
С-4	147.4(s)	H-12	
С-5	34.8(t)	H-6	
С-6	24.1(t)	H-5	
С-7	41.0(d)	H-6, H-8, H-10	
С-8	43.9(t)	H-7, H-13	
С-9	202.3(s)	H-8	
C-10	48.4 (d)	H-6, H-8, H-14	
C-11	19.4(q)	H-10	
C-12	21.6(q)		
C-13	29.5 (d)	H-14	
C-14	19.6(q)	H-13	
C-15	45.6(t)	H-14	
C-16	210.1(s)	H-13, H-17	
C-17	52.6(t)	H-19, H-20	
C-18	24.4(d)	H- 17	
C-19	22.5(q)	H-17	
С-20	22.4 (q)	H-17	

TABLE 2. ¹³C-nmr Data^a (125 MHz) for Isoreiswigin [3].

^aMultiplicity determined by a DEPT experiment.

^{b1}H-¹³C correlations correspond to 2-bond and 3-bond connectivities (HMBC experiment).

the structures the difference in the skeletons of compounds 1 (and 2) and 3 is only in the position of the angular methyl (C-11), requiring a different rearrangement of the geranylgeraniol from the one leading to compounds 1and 2.

The suggested structure is consistent with the major mass spectral fragments (m/z, mmu): $C_{19}H_{27}O_3$ (303.1998, -3.8), $C_{15}H_{22}O_2$ (234.1627, -0.8), $C_{16}H_{16}O_2$ (192.1203, 5.3), and $C_8H_{15}O$ (127.1113, 0.9) (Figure 1) (1). The relative stereochemistry of three of the chiral centers of the molecule, C-1, C-7, and C-10, was assigned by an nOe difference experiment summarized in Figure 1.

The recent synthesis of reiswigin A [1] has confirmed the absolute configuration of C-13 (6). However, the configuration of C-13 in 3 has yet to be established.

EXPERIMENTAL

Major mass spectrometer fragmentations and nOe's of 3. FIGURE 1.

4020 quadrupole spectrometer equipped with a data system, and hrms on a VG-70, VSEQ instrument. Optical rotation was measured on a Perkin-Elmer 241 polarimeter with a 10 cm microcell in CHCl₃. Ir spectra were recorded in CHCl₃ on a Perkin-Elmer model 1600FT-IR instrument, uv spectra in heptane solution on a Varian Cary 219 spectrophotometer, and nmr spectra in CDCl₃ solution on a Bruker 500 MHz spectrometer (TMS as internal reference).

EXTRACTION AND PURIFICATION.-A sample of the sponge E. reiswigi (55 g dry wt) was extracted with heptane to give, after evaporation, a gummy crude extract (3 g). Chromatography on Si gel with heptane and 10% EtOAc gave reiswigin A [1] (1.15 g, 2% yield of the dry lyophilized sponge); with 15% EtOAc, reiswigin B [2] (90 mg, 0.16%); and with 17% EtOAc, isoreiswigin [3] (ca. 80% pure, 40 mg). Hplc first on a Si gel column eluted with heptane-EtOAc (9:1) and then on an RP-18 column eluted with MeOH-H₂O (9:1) gave pure 3 (20 mg, 0.03% yield of the lyophilized sponge) as a foaming oil.

ISOREISWIGIN.— $[\alpha]^{25}D+22^{\circ}$ (c=1.5, CHCl₃); λ max (heptane) 240 (2000) nm; ir (CHCl₃) 2973, 1738, 1730, 1710, 1642, 1586, 1140 cm⁻¹; hrms [M]⁺ 318.2167 (calcd for $C_{20}H_{30}O_3$; ms m/z (%) 319 (36), 318 (12), 303 (6), 234 (4), 192 (3), 108 (8); ¹H nmr see Table 1; ¹³C nmr see Table 2.

LITERATURE CITED

- 1. Y. Kashman, S. Hirsch, F. Koehn, and S. Cross, Tetrahedron Lett., 28, 5461 (1987).
- K. Nagayama, A. Kumar, K. Wuthrich, 2. and R.R. Ernst, J. Magn. Reson., 40 321 (1980).
- 3. M.W. Edwards and A. Bax, J. Am. Chem. Soc., 108, 918 (1986).
- 4. A. Bax and M.F. Summers, J. Am. Chem. Soc., 108, 8083 (1986).
- 5. M.F. Summers, L.G. Marzilli, and A. Bax, J. Am. Chem. Soc., 108, 4285 (1986).
- 6. B.B. Snider and Ke. Yang, J. Org. Chem., **55**, 4392 (1990).

Received 11 February 1991